A note on CLT groups

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A note on quasi irresolute topological groups

In this study, we investigate the further properties of quasi irresolute topological groups defined in [20]. We show that if a group homomorphism f between quasi irresolute topological groups is irresolute at $e_G$, then $f$ is irresolute on $G$. Later we prove that in a semi-connected quasi irresolute topological group $(G,*,tau )$, if $V$ is any symmetric semi-open neighborhood of $e_G$, then...

متن کامل

a note on finite c-tidy groups

let $g$ be a group and $x in g$‎. ‎the cyclicizer of $x$ is defined to be the subset $cyc(x)=lbrace y in g mid langle x‎, ‎yrangle ; {rm is ; cyclic} rbrace$‎. ‎$g$ is said to be a tidy group if $cyc(x)$ is a subgroup for all $x in g$‎. ‎we call $g$ to be a c-tidy group if $cyc(x)$ is a cyclic subgroup for all $x in g setminus k(g)$‎, ‎where $k(g)$ is the intersection of all the cyclicizers in ...

متن کامل

a note on quasi irresolute topological groups

in this study, we investigate the further properties of quasi irresolute topological groupsde ned in [20]. we show that if a group homomorphism f between quasi irresolute topologicalgroups is irresolute at eg, then f is irresolute on g. later we prove that in a semi-connectedquasi irresolute topological group (g; ; ), if v is any symmetric semi-open neighborhood ofeg, then g is generated by v...

متن کامل

A Note on Absolute Central Automorphisms of Finite $p$-Groups

Let $G$ be a finite group. The automorphism $sigma$ of a group $G$ is said to be an absolute central automorphism, if for all $xin G$, $x^{-1}x^{sigma}in L(G)$, where $L(G)$ be the absolute centre of $G$. In this paper, we study  some properties of absolute central automorphisms of a given finite $p$-group.

متن کامل

A note on filled groups

Let G be a finite group and S a subset of G. Then S is product-free if S ∩ SS = ∅, and S fills G if G∗ ⊆ S ∪ SS. A product-free set is locally maximal if it is not contained in a strictly larger product-free set. Street and Whitehead [J. Combin. Theory Ser. A 17 (1974), 219–226] defined a group G as filled if every locally maximal product-free set in G fills G. Street and Whitehead classified a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Pacific Journal of Mathematics

سال: 1968

ISSN: 0030-8730,0030-8730

DOI: 10.2140/pjm.1968.27.229